行业新闻

◆ 高分子材料阻燃技术应用及发展探讨

 一、高分子材料的燃烧及阻燃机理

    高分子材料在空气中受热时,会分解生成挥发性可燃物,当可燃物浓度和体系温度足够高时,即可燃烧。所以高分子材料的燃烧可分为热氧降解和燃烧两个过程,涉及传热、高分子材料在凝聚相的热氧降解、分解产物在固相及气相中的扩散、与空气混合形成氧化反应场及气相中的链式燃烧反应等一系列环节。当高分子材料受热的热源热量能够使高分子材料分解,且分解产生的可燃物达到一定浓度,同时体系被加热到点燃温度后,燃烧才能发生。而己被点燃的高分子材料在点燃源稳定后能否继续燃烧则取决于燃烧过程的热量平衡。当供给燃烧产生的热量等于或大于燃烧过程各阶段所需的总热量时,高分子材料燃烧才能继续,否则将中止或熄灭。从高分子材料的燃烧机理可看出,阻燃作用的本质是通过减缓或阻止其中一个或几个要素实现的。其中包括六个方面:提高材料热稳定性、捕捉游离基、形成非可燃性保护膜、吸收热量、形成重质气体隔离层、稀释氧气和可燃性气体。目前常采用的阻燃剂行为主要是通过冷却、稀释、形成隔离膜的物理途径和终止自由基的化学途径来实现。一般阻燃机理分为气相阻燃机理、凝聚相阻燃机理和中断热交换阻燃机理。燃烧和阻燃都是十分复杂的过程,涉及很多影响和制约因素,将一种阻燃体系的阻燃机理严格划分为某一种是很难的,一种阻燃体系往往是几种阻燃机理同时起作用。

    二、高分子材料阻燃剂的分类

    阻燃剂是用于提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。按阻燃剂与被阻燃基材的关系,阻燃剂可分为添加型及反应型两大类。前者与基材的其他组分不发生化学反映,只是以物理方式分散于基材中,多用于热塑性高分子材料。后者或者为高分子材料的单体,或者作为辅助试剂而参与合成高分子材料的化学反应,最后成为高分子材料的结构单元,多用于热固性高分子材料。按阻燃元素种类,阻燃剂常分为卤系、有机磷系及卤-磷系、氮系、磷-氮系、锑系、铝-镁系、无机磷系、硼系、钼系等。

    (一)卤系阻燃剂

    卤系阻燃剂是目前世界上产量最大的有机阻燃剂之一,添加量少、阻燃效果显著。含氯的阻燃剂主要有氯化石蜡、氯化聚乙烯等;含溴阻燃剂因阻燃效果较好,应用极为广泛,逐渐取代氯系阻燃剂。卤系阻燃剂阻燃机理比较清楚,但其阻燃的同时,也带来了一些严重的问题,放出大量的有毒气体(如HCl,HBr等),卤化氢气体易吸收空气中的水分形成氢卤酸,具有很强的腐蚀作用,并产生大量的烟雾,这些烟雾、有毒气体和腐蚀性气体给灭火、逃离和恢复工作带来很大的困难。

上一篇:硬质聚氨酯泡沫塑料阻燃剂应具备的条件 下一篇:欧盟研制出更环保安全的火焰阻燃技术
版权所有 FIRE2024中国(广州)国际阻燃剂应用技术展览会 电 话:+86-21-56177795 传 真:+86-21-51069101 邮 箱:kunhuiexpo@163.com 联系人:王先生(先生)